第三章 電能與電位

Electric Potential Energy and Electric Potential

3-1. 電位能(electric potential energy)與電位(potential)

一個點電荷 q 位於空間某固定位置，在其建立的電場中，另有一個點電荷 q'，沿一曲線路徑運動。見圖 3-1。q'在P點受點電荷q施予的靜電力為 $F_{E'} = q'\vec{E}$。此力從 a 點到 b 點所作的總功為

$$W_{E_b} = \int_a^b q' \vec{E} \cdot d\vec{s} \quad (3-1)$$

式中 $\vec{E} = \frac{1}{4\pi\varepsilon_0 \ r^2} \ \hat{r}$ 為點電荷 q 在 P 點產生的電場，$d\vec{s} = \hat{r}dr + \hat{\theta}rd\theta$ 為位移基素。圖 3-1

$$\vec{E} \cdot d\vec{s} = \frac{1}{4\pi\varepsilon_0 \ r^2} \ q \ (\hat{r}dr + \hat{\theta}rd\theta) = \frac{1}{4\pi\varepsilon_0 \ r^2} \ q \ dr$$

代入(3-1)式得

$$W_{E_b} = \int_a^b q' \vec{E} \cdot d\vec{s} = \frac{qq'}{4\pi\varepsilon_0 r_a} \int_a^b \frac{dr}{r} = \frac{qq'}{4\pi\varepsilon_0 r_a} \left(-\frac{1}{r_b} \right)$$

$$= -(\frac{qq'}{4\pi\varepsilon_0 r_b} - \frac{qq'}{4\pi\varepsilon_0 r_a}) = -(U_b - U_a) = -\Delta U_e \quad (3-2)$$

上式顯示，靜電力 \vec{E} 所做的功，只與電荷移動的起始點及末後點有關，而與路徑無關，故靜電力為保守力(conservative force)。靜電場為保守場(conservative field)。因此靜電力 \vec{E} 所做的功 W_{E_b} 可化為電位能改變 ΔU_e 的負值。

$$\Delta U_e = U_b - U_a = \frac{qq'}{4\pi\varepsilon_0 r_b} - \frac{qq'}{4\pi\varepsilon_0 r_a} \quad (3-3)$$

ΔU_e 稱為 a, b 二點電位能的差。點電荷 q' 在位置 \vec{r} 的電位能為

$$U_e = \frac{qq'}{4\pi\varepsilon_0 r} + C, \quad C \text{ 為任意常數} \quad (3-4)$$

式中常數之值何，不關緊要，因為靜電力在二位置間作的功，始終是二位
置位能的差，常數總是被消掉。因此我們可以隨意選擇任意一個位置之電位能為零為作參考，其他位置的電位能值即為該位置與參考位置間的電位能差。

若在(3-4)式中，設定 $r \to \infty$，電位能為 $U_e = 0$，則 $C = 0$。於是在任意位置 r 處之電位能為:

$$U_e(r) = \frac{qq'}{4\pi\varepsilon_0 r} \quad (J) \quad (3-5)$$

若在(3-2)式中設定 a 點位於 $r_a = r$，b 點位於 $r_b = \infty$，則

$$W_{f_E} = \int_a^b q' \cdot \vec{E} \cdot d\vec{s} = \frac{qq'}{4\pi\varepsilon_0} \int_a^b \frac{dr}{r^2} = \frac{qq'}{4\pi\varepsilon_0} \left(\frac{1}{r}\right)_a^b$$

$$= -\left(\frac{qq'}{4\pi\varepsilon_0 \infty} - \frac{qq'}{4\pi\varepsilon_0 r}\right) = \frac{qq'}{4\pi\varepsilon_0 r} = U_e(r)$$

$$= \int_a^b (-q' \cdot \vec{E}) \cdot d\vec{s} = \int_a^b \vec{F}_{ext} \cdot d\vec{s} \quad (3-6)$$

式中，$\vec{F}_{ext} = -q' \cdot \vec{E} = -F_E$，是作用於 q' 上的外力，其大小與靜電力 F_E 相同，方向則相反。由(3-6)式得知，電位能 $U_e(r)$ 的物理意義為外力將點電荷 q' 從無限遠處，緩慢移至與點電荷 q 相距 r 遠處所做的功 W_{f_E}。這也就是點電荷 q 與 q' 相距 r 遠時的電位能(electric potential energy) U_e。

例3-1. 將 q_1，q_2 及 q_3 三個點電荷置於如圖 3-2 所示的位置，求此系統的電能。

【解】 此系統的電能可依以下步驟計算而得:

1) 假設原先，q_1，q_2 及 q_3 三個點電荷彼此相距無限遠。故電荷間彼此幾無相互作用力。

2) 先將 q_1 從無限遠處移到右圖的固定位置，由於 q_1 不受電力，故此過程不必做功。

$$W_1 = 0.$$

3) 其次將 q_2 從無限遠處，移到距 q_1 電荷 r_{12} 處，此過程外力須克服 q_1 與 q_2 間之靜電力。故外力做的功為
\[W_2 = \frac{q_1 q_2}{4\pi \varepsilon_0 r_{12}} \]

(4) 再將 \(q_3 \) 從無限遠處，移到距 \(q_1 \) 電荷 \(r_{13} \) 處，距 \(q_2 \) 電荷 \(r_{23} \) 處。此過程外力須克服 \(q_1 \) 及 \(q_2 \) 分別與 \(q_3 \) 間之靜電力，故外力做的功為

\[W_3 = \frac{q_1 q_3}{4\pi \varepsilon_0 r_{13}} + \frac{q_2 q_3}{4\pi \varepsilon_0 r_{23}} \]

(5) 在這些過程中所做的總功即為此系統之電位能 \(U_e \)

\[U_e = W_1 + W_2 + W_3 = 0 + \left(\frac{q_1 q_2}{4\pi \varepsilon_0 r_{12}} \right) + \left(\frac{q_2 q_3}{4\pi \varepsilon_0 r_{23}} \right) \]

\[= \frac{q_1 q_2}{4\pi \varepsilon_0 r_{12}} + \frac{q_2 q_3}{4\pi \varepsilon_0 r_{23}}, \quad (J) \]

電位(electric potential)的定義：將單位正電荷從無限遠處，緩慢移至空間某位置所做的功稱為該位置的電位 \(V \)。其數學表示式為:

\[V = \frac{W_{\text{tot}}}{q'} = \frac{U_e}{q'} \quad (J/C) \] \hspace{1cm} (3-7)

今為電位設定一新單位稱為伏特(volt, V)，1 (V) = 1 (J/C)

3-2 點電荷電位的計算方法

圈 3-3 中，一點電荷 \(q \) 固定於某一位置，將另一點電荷 \(q' \) 置於距其 \(r \) 遠處之 \(P \) 點，則此系統的電位能為

\[U_e(r) = \frac{qq'}{4\pi \varepsilon_0 r} \]

\[V(r) = \frac{U_e(r)}{q'} = \frac{1}{q'} \left(\frac{qq'}{4\pi \varepsilon_0 r} \right) = \frac{q}{4\pi \varepsilon_o r} \quad (V) \] \hspace{1cm} (3-7)

\[V(r) = \frac{q}{4\pi \varepsilon_o r} \quad (V) \] \hspace{1cm} (3-8)

(3-8) 式僅適用於 \(q \) 為點電荷的情況.
3-3. 一群點電荷電位的計算方法

圖 3-4 中，一群有固定位置的點電荷，
$q_1, q_2, q_3, \ldots \ldots$ 等，在 P 點產生的電位可經由以下步驟獲得:

1. 先計算每個點電荷單獨存在時，
 分別在 P 點產生的電位，$V_1, V_2,
 V_3, \ldots \ldots$ 等。

2. 由 (3-8) 式得知:

 $$V_1(r) = \frac{q_1}{4\pi\varepsilon_0 r_1}, \quad V_2(r) = \frac{q_2}{4\pi\varepsilon_0 r_2}, \quad V_3(r) = \frac{q_3}{4\pi\varepsilon_0 r_3}, \ldots$$

(2) 由於電位的定義是對單位正電荷所做的功，而功有疊加性，故所有的點電荷在 P 點產生的總功 $V(r)$ 為

$$V(r) = V_1 + V_2 + V_3 = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{N} \frac{q_i}{r_i} \quad \text{(3-9)}$$

3-4. 連續分佈電荷電位的計算方法

若電荷連續分佈於某一區域 τ 內，電荷密度 ρ 為位置的函數，見圖 3-5，則空間任意一點 P 的電位，可依下列步驟獲得:

1. 在電荷分佈區取一個電荷 элемент
 $dq = \rho d\tau$，式中 $d\tau$ 為體積基元。

2. dq 在 P 點產生的電位基元 dV 為

 $$dV = \frac{dq}{4\pi\varepsilon_0 r}$$

(3) 將 dV 對全部電荷分佈之體積積分，以求 P 點總電位。

$$V = \frac{1}{4\pi\varepsilon_0} \int_{\tau} \frac{dq}{r} \quad \text{(3-10)}$$

當電荷作體狀分佈時，$dq = \rho d\tau$，ρ 為體電荷密度。

當電荷作面狀分佈時，$dq = \sigma da$，σ 為面電荷密度。
當電荷作線狀分佈時，\(dq = \lambda d\ell \)，\(\lambda \) 為線電荷密度。

3.5. 由電場求電位差，再求電位

由 (3-2) 式
\[
\int_{a}^{b} q' \vec{E} \cdot \vec{dS} = -(U_{b} - U_{a})
\]
將等式兩端除以 \(q' \) 得
\[
\int_{a}^{b} \vec{E} \cdot \vec{dS} = -(V_{b} - V_{a})
\]
此式可寫成以下型式
\[
V_{ab} = V_{a} - V_{b} = \int_{a}^{b} \vec{E} \cdot \vec{dS} \quad (3-11)
\]
或
\[
V_{ab} = V_{a} - V_{b} = -\int_{b}^{a} \vec{E} \cdot \vec{dS} \quad (3-12)
\]
式中，
\[
V_{ab} = V_{a} - V_{b} = -(V_{b} - V_{a}) = V_{ba}
\]

\(V_{ab} \) 稱為 \(a, b \) 二點的電位差 (electric potential difference)。由於電位差是由電場作線積分得來，故 \(V_{a} \) 與 \(V_{b} \) 由積分得的常數項，在電位相減時消除掉。又由於積分所得的，永遠是二點間的電位差，這是一種相對值，任意一位置電位的絕對值沒有意義。因此，可以在空間設定任意一個位置之電位為零作參考，則其它任意一點與此零電位點的電位差的值即為該點的電位。

3.6. 由電位求電場

由 (3-11) 式
\[
\int_{b}^{a} \vec{E} \cdot \vec{dS} = -(V_{a} - V_{b}) = -\int_{V_{a}}^{V_{b}} dV
\]
得
\[
\vec{E} \cdot \vec{dS} = -dV = E_{x}dx + E_{y}dy + E_{z}dz \quad (a)
\]
式中電位 \(V \) 是座標 \(x, y, z \) 的函數，
即 \(V = V(x, y, z) \)
故電位與電場有以下之關係:
\[
E_{x} = -\frac{\partial V}{\partial x}, \quad E_{y} = -\frac{\partial V}{\partial y}, \quad E_{z} = -\frac{\partial V}{\partial z} \quad (3-13)
\]
又由 \(\vec{E} \cdot \vec{dS} = E_{x}ds = -dV \)，得
\[
E_{x} = -\frac{dV}{ds}
\]
式中 \(E_{x} \) 為 \(\vec{E} \) 的切線分量。

若 \(V \) 僅僅是 \(r \) 的函數，則
\[
E = -\frac{dV(r)}{dr}.
\]
上式 E 為圖 3-6(a)中，$V(r)$函數曲線上的任意點 P 的電場，其值等於 P 點切線斜率的負值。

若 $V(r)$函數曲線在 P 點為不連續，如圖 3-6(b)所示，則 P 點切線的斜率
\[
\frac{dV}{ds} = \infty. \quad \text{由於電場為單位電荷所受之力，力的值不可能為無限大，即}
\]
\[
\frac{dV}{ds} \neq \infty, \quad \text{故} \ P \text{點的電位不得為不連續，此結果顯示電位函數具有連續性。}
\]

3-7. 計算電位之實例

例 3-2. 求圖 3-7 中，電偶極在 P 點產生的電位及電場。($a << r$)

【解】電偶極極一般點電荷的分佈。由於電位為純量，電場為向量，求一般點電荷的電位較易於求電場，故宜先求電位，再由電位求電場。

P 點的電位為:

\[
V(r, \theta) = \frac{q}{4\pi \varepsilon_0} \left(\frac{1}{r} - \frac{1}{r_+} \right) \tag{3-14}
\]

由圖上得知

\[
r_+^2 = r^2 + a^2 - 2ra \cos \theta
\]

\[
\frac{1}{r_+} = \frac{1}{r} \left(1 + \frac{a^2}{r^2} \pm \frac{2a \cos \theta}{r} \right)^{1/2} \approx \frac{1}{r} \left[1 - \frac{1}{2} \left(\frac{a^2}{r^2} - \frac{2a \cos \theta}{r}\right) + \cdots \right] \tag{3-15}
\]

\[
r_-^2 = r^2 + a^2 + 2ra \cos \theta
\]

\[
\frac{1}{r_-} = \frac{1}{r} \left(1 + \frac{a^2}{r^2} + \frac{2a \cos \theta}{r} \right)^{1/2} \approx \frac{1}{r} \left[1 - \frac{1}{2} \left(\frac{a^2}{r^2} + \frac{2a \cos \theta}{r}\right) + \cdots \right] \tag{3-16}
\]

(3-15)及(3-16)代入(3-14)得電位函數如下所示

\[
V(r, \theta) = \frac{q2a \cos \theta}{4\pi \varepsilon_0 r^2} = \frac{p \cos \theta}{4\pi \varepsilon_0 r^2} = \frac{\vec{p} \cdot \hat{r}}{4\pi \varepsilon_0 r^2} \tag{3-17}
\]

式中 $p = 2aq$ 為電偶極矩。

再由電位計算 P 點的電場 $E(x, y, z)$.

再由電位計算 P 點的電場 $E(x, y, z)$.

再由電位計算 P 點的電場 $E(x, y, z)$.

再由電位計算 P 點的電場 $E(x, y, z)$.
先將電位用笛卡兒座標表示：

\[r = (x^2 + y^2)^{\frac{1}{2}}, \quad \cos \theta = \frac{y}{r}, \]

代入 (3-17) 式得

\[V(x, y, z) = \frac{py}{4\pi \varepsilon_0 (x^2 + y^2)^{\frac{3}{2}}} \]

\[E_x = -\frac{\partial V}{\partial x} = -\frac{py}{4\pi \varepsilon_0} \frac{\partial}{\partial x} (x^2 + y^2)^{\frac{3}{2}} = -\frac{py}{4\pi \varepsilon_0} \left(-\frac{3}{2} \right)(x^2 + y^2)^{\frac{5}{2}} (2x) \]

\[= \frac{3 pxy}{4\pi \varepsilon_0 (x^2 + y^2)^{\frac{5}{2}}} \]

\[E_y = -\frac{\partial V}{\partial y} = -\frac{p}{4\pi \varepsilon_0} \frac{\partial}{\partial y} \left[y(x^2 + y^2)^{\frac{3}{2}} \right] \]

\[= -\frac{p}{4\pi \varepsilon_0} \left[(x^2 + y^2)^{\frac{1}{2}} + y(-\frac{3}{2})(x^2 + y^2)^{\frac{5}{2}} (2y) \right] \]

\[= \frac{p(2y^2 - x^2)}{4\pi \varepsilon_0 (x^2 + y^2)^{\frac{5}{2}}} \]

\[E_z = -\frac{\partial V}{\partial z} = 0 \]

\[\therefore E = \frac{p}{4\pi \varepsilon_0 (x^2 + y^2)^{\frac{5}{2}}} \left[\hat{x}3xy + \hat{y}(2y^2 - x^2) \right] \quad (3-18) \]

例 3-3. 圖 3-8 中，電荷 \(Q \) 均勻分佈於半徑為 \(R \) 的圓周上，求經過圓心，並與圖面垂直的 z-軸上 P 點的電位與電場。

【解】先由連續分佈的電荷求電位

\[V = \frac{1}{4\pi \varepsilon_0} \int \frac{dq}{r} \]

在圓周頂端取電荷基素 \(dq \) 如圖 3-8 所示，代入上式

\[\text{圖 3-8} \]
\[V = \frac{1}{4\pi \varepsilon_0} \int dq \frac{1}{r} = \frac{1}{4\pi \varepsilon_0 r} \int dq = \frac{Q}{4\pi \varepsilon_0 r} \]

以上結果雖然正確，不過分母中，用了一個英文字母 \(r \)，這是本來題目沒有給的物理量，這種表示法應避免。宜使用題目給的物理量表示。

由圖 3-8 得知 \(r = (R^2 + z^2)^{\frac{1}{2}} \)，代入上式得電位為

\[V = \frac{Q}{4\pi \varepsilon_0 \sqrt{R^2 + z^2}} \quad (3-19) \]

再由電位求電場分量

\[E_x = -\frac{\partial V}{\partial x} = 0, \quad E_y = -\frac{\partial V}{\partial y} = 0 \]

\[E_z = -\frac{\partial V}{\partial z} = -\frac{\partial}{\partial z} \left(\frac{Q}{4\pi \varepsilon_0 \sqrt{R^2 + z^2}} \right) = \frac{Oz}{4\pi \varepsilon_0 (R^2 + z^2)^{\frac{3}{2}}} \]

故電場向量為

\[\vec{E} = \frac{Oz}{4\pi \varepsilon_0 (R^2 + z^2)^{\frac{3}{2}}} \hat{z} \quad (3-20) \]

例 3-4. 電荷 Q 均勻分佈於半徑為 R 的球面上，求距球心 \(r \) 遠處一點 P 的電位與電場。(見圖 3-9)

【解】由高斯定理求得 P 點的電場為

\[\vec{E} = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \hat{r} \quad (r \geq R) \]

\[= 0 \quad \quad (r < R) \]

以上結果在前一章已計算過。

先由電場求電位差

\[V_a - V_b = \int_a^b \vec{E} \cdot d\vec{s} \quad (3-21) \]

在 \(r > R \) 的區域
\[V_a - V_b = \int_a^b \frac{Q}{4\pi\varepsilon_0 r^2} \mathbf{r} \cdot d\mathbf{s} = \int_{r_a}^{r_b} \frac{Q}{4\pi\varepsilon_0} \frac{1}{r^2} dr = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b} \right) \]

設定 \(r_b \to \infty \) 處， \(V_b = 0 \); \(r_a = r \) 處， \(V_a = V \) 代入上式

得

\[V = \frac{Q}{4\pi\varepsilon_0 r}, \quad (r \geq R) \quad (3-22) \]

在 \(r < R \) 的區域 \(E = 0 \) \(V_a - V_b = 0 \),

由以上結果顯示，球內任意二點的電位差皆為零，即球內任意一點的電位 \(V \) 皆相等。

令 \(V = V_a = V_b = C \) (常數)

由於電位有連繫性，P 點在球面上，此點屬球內也屬球外，球面上的電位可由球外之電位獲得，即

\[V = \frac{Q}{4\pi\varepsilon_0 r}, \quad (r \leq R) \quad (3-23) \]

故球內的電位為

\[V = \frac{Q}{4\pi\varepsilon_0 R}, \quad (r \leq R) \]

現將空間任意一點的電場與電位函數曲線繪出如圖 3-10 所示。

例 3-5. 電量 \(Q \) 均勻分佈於半徑為 \(R \) 的介電質球體內，如圖 3-11 所示。試求空間任意一點 \(P \) 的電場。

【解】由高斯定律

\[\oint E \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\varepsilon_0} \]

得

\[E = \frac{Q}{4\pi\varepsilon_0 r^2} \mathbf{r}, \quad (r \geq R) \]

\[= \frac{Qr}{4\pi\varepsilon_0 R^3} \mathbf{r}, \quad (r \leq R) \]

圖 3-11
先由電場求電位差

\[V_a - V_b = \int_a^b \mathbf{E} \cdot d\mathbf{s} \]

\(r > R \) 的區域

\[V_a - V_b = \int_a^b \frac{Q}{4\pi\varepsilon_0 r^2} \hat{r} \cdot d\mathbf{s} = \frac{Q}{4\pi\varepsilon_0} \int_a^b \frac{dr}{r^2} = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b} \right) \]

設定 \(r_b \to \infty \) 處，\(V_b = 0 \), \(r_a = r \) 處，\(V_a = V \) 代入上式

得球外的電位

\[V = \frac{Q}{4\pi\varepsilon_0 r}, \quad (r \geq R) \]

\(r < R \) 的區域

\[V_a - V_b = \int_a^b \frac{Qr}{4\pi\varepsilon_0 R^3} \hat{r} \cdot d\mathbf{s} \]

\[= \frac{Q}{4\pi\varepsilon_0 R^3} \int_a^b r dr = \frac{Q}{8\pi\varepsilon_0 R^3} (r_b^2 - r_a^2) \]

因電位有連續性，球內 \(b \) 點在球面上時，即在 \(r_b = R \) 構

\[V_b = \left[\frac{Q}{4\pi\varepsilon_0 r} \right]_{r=R} = \frac{Q}{4\pi\varepsilon_0 R} \]

設定 \(r_a = r \), \(V_a = V \) 代入電位差的式子

\[V = \frac{Q}{4\pi\varepsilon_0 R^3} = \frac{Q}{8\pi\varepsilon_0 R} (R^2 - r^2) \]

\[V = \frac{Q}{8\pi\varepsilon_0 R^3} (3R^2 - r^2), \quad (r \leq R) \]

現將空間任意一點的電場與電位函數曲線繪出如圖 3-12 所示。

例 3-6. 半徑為 \(R \), 無限長的帶電圓柱導體, 單位長度的電量為 \(\lambda \) (C/m). 求空間任意一點的電位與電場.
由高斯定律
\[\oint E \cdot d\mathbf{a} = \frac{q_{\text{enc}}}{\varepsilon_0} \]
得
\[E = \frac{\lambda}{2\pi\varepsilon_0 r}, \quad (r \geq R) \]
\[= 0, \quad (r < R) \]
代入 \(V_a - V_b = \int_{a}^{b} E \cdot d\mathbf{s} \) 式求電位差

若 \(r > R \) 之區域，見圖 3-13，

\[V_a - V_b = \int_{a}^{b} \frac{\lambda}{2\pi\varepsilon_0 r} \cdot dr \]

若設定 \(r_b \to \infty, V_b = 0; r_a = r, V_a = V \)

則得
\[V = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{r_b}{r_a} = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{r_b}{r} \]

此結果顯示，若設定離圓柱軸無限遠處之電位為零，則在離軸有限遠處的所有位置，電位皆為有限大，致使各位置電位的高低無法分辨。因此，若電荷分佈於無限大的區域，不可設定無限遠處之電位為零，本題之情況宜作以下的設定。

設定 \(r_b = r, (r \geq R), V_b = 0; r_a = r, V_a = V \)

得
\[V = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{r_a}{r}, \quad (r \geq R) \quad (3-24) \]

若 \(r < R \) 之區域

\[V_a - V_b = 0, \quad \text{故導體內} \quad V = V_a = V_b = C(\text{const}) \]

因電位有連續性，在導體表面 \(r = R \) 處之電位 (3-24) 式獲得

\[V = C = \left[\frac{\lambda}{2\pi\varepsilon_0} \ln \frac{r_a}{r} \right]_{r=R} = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{r_a}{R} \]

\[V = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{r_a}{R}, \quad (r \leq R) \quad (3-25) \]
由於電位具有連續性，以及當電荷分佈於有限區域時，可設定離電荷無限遠處之電位為零 \((r_0 \to \infty, V_0 = 0)\)，任意位置之電位為 \(V(r_0 = r, V_0 = V)\)

如此

\[
V_a - V_b = \int_{\alpha}^{\beta} \vec{E} \cdot d\vec{s}
\]

可寫成

\[
V = \int_{\alpha}^{\beta} \vec{E} \cdot d\vec{s}
\]

故當電荷分佈於有限區域時，用以下之方法求空間任意位置的電位較為方便。

即使用

\[
V = \int_{r}^{\infty} \vec{E} \cdot d\vec{s} \quad \text{或} \quad V = -\int_{\infty}^{r} \vec{E} \cdot d\vec{s} \quad (3-26)
\]

及

\[
V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r}
\]

注意：當電荷分佈於無限大區域時，以上二式不適用。

例 3-7 圖 3-14，兩個半徑分別為 \(R_a\) 及 \(R_b > R_a\) 之同心導體球面，分別帶 \(Q_a\) 及 \(Q_b\) 之電荷。試求內，外球殼的電位差 \(V_{ab}\)。

【解】應用高斯定律

\[
\oint \vec{E} \cdot d\vec{a} = \frac{q_{net}}{\varepsilon_0}
\]

取半徑為 \(r (R_a < r < R_b)\) 的同心球面為高斯面，則面上之電場為

\[
\vec{E} = \frac{Q_a}{4\pi\varepsilon_0 r^2} \hat{r} \quad (R_a < r < R_b)
\]

代入

\[
V_a - V_b = \int_{\alpha}^{\beta} \vec{E} \cdot d\vec{s}
\]

得

\[
V_a - V_b = \int_{R_a}^{R_b} \frac{Q_a}{4\pi\varepsilon_0 r^2} dr = \frac{Q_a}{4\pi\varepsilon_0} \left(\frac{1}{R_a} - \frac{1}{R_b} \right)
\]

此結果顯示，內外球殼的電位差只與內球殼上的電荷 \(Q_a\) 有關。

式中最後一項為正值，即 \(\frac{1}{R_a} - \frac{1}{R_b} > 0\)

若 \(Q_a\) 為正電荷，則 \(V_{ab} = V_a - V_b > 0\); 若 \(Q_b\) 為負電荷，則 \(V_{ab} = V_a - V_b < 0\),

12
由於正電荷移動的方向是由高電位指向低電位，負電荷移動的方向是由低電位指向高電位。若將兩外球殼用導線相連，不論 \(Q \) 為正或負電荷，必受靜電力皆由內球殼全部推向外球殼。

例 3-8. 電量 \(Q \) 均勻分佈於半徑為 \(R \) 的介電質球體內，如圖 3-15 所示。試求球心的電位

【解】由高斯定律 \[\oint E \cdot d\vec{a} = \frac{Q_{\text{enc}}}{\varepsilon_0} \]

得
\[E = \frac{Q}{4\pi\varepsilon_0 r^2} \hat{r}, \quad (r \geq R) \]
\[= \frac{Qr}{4\pi\varepsilon_0 R^3} \hat{r}, \quad (r \leq R) \]

\[\text{圖 3-15} \]

由
\[V = \int E \cdot d\delta = \int_r^R E \cdot d\delta + \int_R^\infty E \cdot d\delta \]
\[= \frac{Q}{4\pi\varepsilon_0 R^3} \int_r^R r \cdot dr + \frac{Q}{4\pi\varepsilon_0} \int_R^\infty \frac{1}{r^2} \, dr \]
\[= \frac{Q}{8\pi\varepsilon_0 R^3} \left(r^2 - r^2 \right) + \frac{Q}{4\pi\varepsilon_0 R} \]
\[= \frac{Q}{8\pi\varepsilon_0 R^3} (3R^2 - r^2) \]

上式為介電質內任意一點的電位。此結果與例 3-5 中之結果一樣。

在球心處，即 \(r = 0 \) 處電位為
\[V = \frac{3Q}{8\pi\varepsilon_0 R} \]

2-8. 凡得格拉夫發電機(Van de Graaff generator)

由上例 3-7 得知，如果一個帶電導體在另一個中空導體內，二者一旦接觸，無論後者已經帶有多少電荷，前者全部之電荷將悉數移至後者。利
用此原理，凡格格拉夫（Rober J. Van de Graaff）发明了一种发电机称为凡格格拉夫发电机。

图 3-16 为教学示範用的小型凡格格拉夫发电机示意图，现将其结构介绍如下：一个像球形的空心金属导体 A，接在用绝缘材料做的圆柱管 B 的上端，管 B 的下端接在金属底座 C 上，底座 C 接地。一条用绝缘材料做的输送带，由两个不导电的轮轴 E 与 F 带动绕转。E 与 F 二轮轴上涂有

不同的材料，使得输送带与 E 接触时，获得负电荷，与 F 接触时获得正电荷。空心导体 A 与基座 C 内部分

别接一根细导体棒，棒的尖端 G 与 H 距离之间的距离非常小。当左侧输送带行时，将正电荷送至轮轴 E 之位置。正电荷即跳至尖端 G 再传到 A 的表面，当右侧输送带下行时，将负电荷送至轮轴 F 之位置。负电荷即跳至尖端 H 再传到地面。若输送带持续绕转，将正电荷持续堆积到球面 A。则球面上的正电荷越积越多，电压因而越来越高。

3.9. 电子伏特

一个质点带有 q 之电量，从电位为 V_a 的位置移往电位为 V_b 的位置时，电位能之改变为

$$\Delta U = q(V_a - V_b) = qV_{ab}$$

若质点之电量为 q = 1.6 × 10^{-19} (C)，电位差为 V = 1(V) 时，电位能之差为

$$\Delta U = (1.6 \times 10^{-19} C)(1V) = 1.6 \times 10^{-19} (J)$$

这样一个额度之能量称为 1 电子伏特(1 eV)。

$$1 \text{ (eV) } = 1.6 \times 10^{-19} (J)$$

常用之单位有下列数个

$$1 \text{ (keV) } = 10^3 \text{ (eV)}$$

$$1 \text{ (MeV) } = 10^6 \text{ (eV)}$$

$$1 \text{ (GeV) } = 10^9 \text{ (eV)}$$
第3章電位與電位能習題

1. 右圖1長之細桿，置於x軸上，一端在原點。桿上之電荷分布，單位長度之電流量為
 \[\lambda = kx, \quad k \text{為常數}. \]
 (a) 取無窮遠處之電位為零，求y軸上P點之電位。
 (b) 求P點電場之y分量。
 Ans. (a) \[V = \frac{k}{4\pi\varepsilon_0} \left(\sqrt{L^2 + y^2} - y \right) \]
 (b) \[E_y = \frac{k}{4\pi\varepsilon_0} \left(1 - \frac{y}{\sqrt{L^2 + y^2}} \right) \]

2. 半徑為a的圓盤上，有電荷均勻分布，表面電荷密度為σ。求中心軸距盤心r遠處之 (a) 電位，(b) 電場，(c) 當 \(r \gg a \) 及 \(r \ll a \) 時，電場之值為何？
 Ans. (a) \[V = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{a^2 + r^2} - r \right) \]
 (b) \[E_r = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{r}{\sqrt{a^2 + r^2}} \right) \]
 (c) \(r \gg a \) 時，\[E_r = \frac{\sigma a^2}{4\varepsilon_0 r^2} \]
 (d) \(r \ll a \) 時，\[E_r = \frac{\sigma}{2\varepsilon_0} \]

3. 電荷均勻分佈於半徑為R之絕緣體內，試求距球心a遠處之電位。
 Ans. \[V = \frac{Q}{8\pi\varepsilon_0 R^2} \left(3R^2 - a^2 \right) \]

4. 內外半徑分別為r_1與r_2之空心絕緣體
 球殼內，有均勻電荷分佈，電荷密度為ρ。
 求下列範圍距球心r遠處之電位。(a) \(r > r_2 \)
 (b) \(r_2 > r > r_1 \)
 (c) \(r < r_1 \)。
 見右圖。
 Ans. (a) \[V(r) = \frac{\rho(r_2^3 - r_1^3)}{3\varepsilon_0 r} \]
 (b) \[V(r) = \frac{\rho}{3\varepsilon_0} \left(\frac{3r_2^2}{2} - \frac{r_2^2}{2} - \frac{r_1^2}{r} \right) \]
 (c) \[V(r) = \frac{\rho}{2\varepsilon_0} \left(r_2^3 - r_1^3 \right) \]

5. 二導體球相距甚遠，皆帶3×10^-9 (C)之電荷，半徑分別為6.0 (cm) 與12 (cm)。
 若此二球以一根細導線相連，求 (a) 電荷移動之方向，(b) 最後各球上之電荷與電位。
Ans. (a) 電荷從小球流向大球。
(b) \(Q_{\text{小}} = 2 \times 10^{-8} \) (C), \(Q_{\text{大}} = 4 \times 10^{-8} \) (C), \(V_{\text{小}} = V_{\text{大}} = 3,000 \) (V)

6. 求右圖電荷偶極在下列位置產生之電場與電位。(a) 在電荷偶極直立分線上的 A 點, (b) 二電荷連線延長線上之 B 點。
Ans. (a) \(V_A = 0 \), \(\vec{E}_A = \hat{i} \frac{1}{2\pi \varepsilon_0} \frac{q\ell}{(\ell^2 + y^2)^{3/2}} \)

(b) \(V_B = -\frac{2q\ell}{4\pi \varepsilon_0 (x^2 - \ell^2)} \), \(\vec{E}_B = -\hat{i} \frac{q\ell}{\pi \varepsilon_0 (x^2 - \ell^2)^2} \)

7. 長為 \(\ell \), 內外半徑分別為 \(a \) 及 \(b \) 之同軸圓柱極, 分別帶 \(+Q \) 及 \(-Q \) 之電荷. 試證有一半的電能儲藏於半徑為 \(r = \sqrt{ab} \) 之範圍內.

8. 將四個同為 \(q \) 之電荷, 從無窮遠處移到邊長為 \(a \) 的正方形之四個頂點上, 須作功多少?
Ans. \(W = \frac{(4 + \sqrt{2})q^2}{4\pi \varepsilon_0 a} \)

9. 半徑為 \(R \) 之絕緣球體, 有電荷 \(Q \) 均勻分佈於內部, 求系統之電能.
Ans. \(W = \frac{3Q^2}{20\pi \varepsilon_0 R} \)

10. 一個無限大電荷平板, 單位面積之電荷密度為 \(\sigma = 1.0 \times 10^{-7} \) (C/m²). 試問電位差為 5.0 (V) 之等位面相距多遠?
Ans. \(d = 4.43 \times 10^{-4} \) (m)

11. 質量為 \(m = 3.27 \times 10^{-10} \) (gm) 的油滴, 停留在二帶電水平平行板間. 二板間之距離為 \(d = 200 \) (cm), 電位差為 \(V = 2.00 \times 10^4 \) (V). 若油滴所受之重力與電力平衡時, 油滴所帶之電荷是多少?
Ans. \(q = 3.2 \times 10^{-16} \) (m)

12. 質量為 0.2 公克之小球, 以絲線懸吊於二直立帶電平行板間. 二板相距 5 (cm), 球上之電荷為 \(6 \times 10^{-19} \) (C). 問二板間之電位差有多大時, 能使絲線與鉛直線夾 30° 角?
Ans. \(V = 9.4 \times 10^3 \) (V)

13. 二互相絕緣之同心薄球殼, 內外半徑分別為 \(R_1 \) 及 \(R_2 \), 分別帶 \(q_1 \) 及 \(q_2 \) 之電量.
試求下列範圍之電場 $\vec{E}(r)$ 及電位 $V(r)$，r 為某位置相對球心之距離。 (a) $r > R_2$，(b) $R_1 < r < R_2$，(c) $r < R_1$。

Ans. (a) $\vec{E}(r) = \frac{q_1 + q_2}{4\pi\varepsilon_0 r^2} \hat{r}$，$V(r) = \frac{q_1 + q_2}{4\pi\varepsilon_0 r}$

(b) $\vec{E}(r) = \frac{q_1}{4\pi\varepsilon_0 r^2} \hat{r}$，$V(r) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1}{r} + \frac{q_2}{R_2} \right)$

(c) $\vec{E}(r) = 0$，$V(r) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1}{R_1} + \frac{q_2}{R_2} \right)$

14. 計算 (a) 氫原子核在其電子運轉的平均半徑($r = 5.3 \times 10^{-11}$ m)處產生之電位。(b) 在軌道上電子之位能，(c) 電子之動能，(d) 欲使氫原子離子化，須要多少能量？所有能量均以電子伏特(eV)表示之。

Ans. (a) $V = 27.17$ (V)，(b) $E_p = -27.17$ (eV)，(c) $E_K = 13.58$ (eV)，

(d) 離子化能量為13.58 (eV)