第 五 章 直流電路

Direct Current Circuits

5-1. 電流(current)與電流密度(current density)

圖 5-1 之導體中，若持續有電場 \vec{E} 存在時，導體內的正電荷會順著電場方向移動，而負電荷則會逆著電場方向移動。今定義單位時間垂直通過導體截面的總電量為電流。依此定義，若在 Δt 時間內垂直通過導體截面的總電量為 ΔQ，則電流 I 為

$$I = \frac{\Delta Q}{\Delta t} \quad (5-1)$$

電流的導出單位為 (C/s)。一個專為電流設定的新單位為安培 (ampere, 簡寫為 A.)，1 (A) = 1 (C/s).

若通過截面的電量會隨時時間改變，則某瞬間的電流 i 為

$$i = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt} \quad (5-2)$$

若導體內電流流過各位置的截面積不盡相同時，則各截面之電流密度也不相等。如圖 5-2 所示。但根據電荷守恆原理，在任意時刻，通過各截面的電流必相等。今定義垂直通過某截面單位面積的電流稱為該截面的電流密度 \vec{J}，即

$$\vec{J} = \frac{i}{A} \quad (5-3)$$

電流密度的單位為 (A/m2)。由於電流密度與截面積有關，故在同一時刻，同一導體內，不同截面上的電流雖然相等，電流密度卻不盡相等。電流為純量，而電流密度則為向量。導體內某位置電流密度的方向與該位置電場的方向相同，即電流密度的方向與正電荷移動的方向相同。若導體內電荷密度不均勻時 (見圖 5-3)，則在任意一個截面 S 上的電流 i 與電流密度 \vec{J} 的關係為

$$i = \int_S \vec{J} \cdot d\vec{s} \quad (5-4)$$
若導體內含有多名電荷載體，每一種電荷載體之帶電量分別為\(q_1, q_2, \ldots, q_N \)，而單位體積含各電荷載體的個數分別為\(n_1, n_2, \ldots, n_N \)，又各種電荷載體在導體內移動的速度分別為\(v_1, v_2, \ldots, v_N \)，這些速度稱為漂移速度(drift velocity)，如圖 5-4 所示，則第 \(i \) 種電荷載體於 \(\Delta t \) 時間內通過截面積 \(A \) 的電量 \(\Delta Q_i \) 為

\[
\Delta Q_i = n_i q_i A v_i \Delta t
\]

導體內之總電量 \(\Delta Q \) 為

\[
\Delta Q = \sum_{i=1}^{N} \Delta Q_i = \sum_{i=1}^{N} n_i q_i A v_i \Delta t
\]

總電流密度 \(J \) 為

\[
J = \frac{\Delta Q}{A \Delta t} = \sum_{i=1}^{N} n_i q_i v_i
\]

電流密度向量 \(\vec{J} \) 為

\[
\vec{J} = \sum_{i=1}^{N} n_i q_i \vec{v}_i
\] (5-5)

5-2. 電阻，電阻係數，與電傳導係數(resistance, resistivity, and conductivity)

導體內的電流密度 \(\vec{J} \) 及電場 \(\vec{E} \) 之間的關係相當複雜，一般 是與導體的性質有關，但有些物質，特別是金屬，\(\vec{J} \) 與 \(\vec{E} \) 有正比的關係，即

\[
\vec{E} = \rho \vec{J}
\] (5-6)

或

\[
\vec{J} = \sigma \vec{E}
\] (5-7)

以上二式稱為歐姆定律(Ohm’s law)，式中

\[
\sigma = \frac{1}{\rho}
\] (5-8)
常數ρ稱為電阻係數，單位為歐姆(ohm・meter)，簡寫為$\Omega \cdot m$。常數σ稱為電導係數，單位為[1/(Ω・m)]，或為seimens/meter，簡寫為s/m。

$$1 \text{ (s/m)} = 1 \text{ (} \Omega \cdot \text{m)}^{-1}$$

所有金屬導體的電阻係數皆隨溫度的增加而增加，如圖5-5(a)所示。在不太大的溫度範圍內，金屬的電阻係數與溫度的關係可用下式表示:

$$\rho_T = \rho_o [1 + \alpha(T - T_o)] \quad (5-9)$$

式中ρ_o為導體在基準溫度T_o時之電阻係數，ρ_T為在溫度為T時的電阻係數。$\alpha^\circ \text{C}^{-1}$為電阻係數的溫度係數。

圖5-5(b)為超導體的電阻係數與溫度的關係曲線。在一般溫度時，超導體的電阻係數隨溫度的下降而有規律地減小，猶如一般導體一樣，但溫度降到所謂的臨界溫度時，約0.1K至20K間，電阻係數則陡降至零。用超導體做的線圈一旦到達這種溫度，其內之電流便會持續存而不須電場驅動。

圖5-5(c)為半導體的電阻係數與溫度的關係曲線。半導體在低溫時，電阻係數極大，此時之特性與絕緣體類似，但隨溫度之上升，電阻係數會迅速減小，而成為導電物質。

![圖5-5](image)

5-3. 金屬導電理論

在現階段我們僅考慮一種最原始的微觀金屬導電理論。擠在金屬晶格中的每個原子，會將一個或多個最外層的電子釋放。於是這些電子可自由運行於晶格間之空間，並與晶格中有固定位置的正離子產生碰撞。這種行為與在容器中的氣體分子與器壁碰撞相似，因些這些電子被稱為電子氣體(electron gas)。在沒有電場的情況下，這些電子在相鄰二次碰撞間作直線運動，如圖5-6(a)所示。假設在沒有外加電場的情況下，電子運動速度的大小為u，自由路徑長度為λ。一旦有外加電場時，電子受電場的作用力，其路徑就會彎曲。如圖5-6(b)所示。

電子在外加電場\vec{E}中受電力$\vec{F} = -e\vec{E}$之作用，使其在電場的反方向產生加速度\vec{a}，其大小為
式中 m 為電子的質量，此加速運動僅發生於每兩次碰撞之間，例如，第一次碰撞後之瞬間，偏向之初速度為 $v_j = 0$，然後加速至第二次碰撞前之瞬間，偏向速度增為 v_j，第二次碰撞後，速度又從零開始重新加速至第三次碰撞前．假設每二次碰撞間的平均時間間隔為 t，則

$$ t = \frac{\lambda}{u} $$

$$ v_j = v_i + at = 0 + \left(\frac{eE}{m} \right) \left(\frac{\lambda}{u} \right) = \frac{eE \lambda}{mu} $$

令偏向速度的平均值稱為漂移速度 (drift velocity) v_d，則

$$ v_d = \frac{v_i + v_j}{2} = \frac{eE \lambda}{2mu} $$

電流密度 J 為

$$ J = nev_d = \frac{ne^2 \lambda}{2mu} E $$

由歐姆定律得電阻係數 ρ 為

$$ \rho = \frac{E}{J} = \frac{2mu}{ne^2 \lambda} \quad \text{(5-10)} $$

由以上結果可用以詮釋圖 5-5(a) 至圖 5-5(c) 中電阻係數 ρ 與溫度 t 的關係。

在金屬中，溫度為定值時，電子氣體之各項參數 m, u, n, e, λ 皆為常數，故 (5-10) 式中電阻係數 ρ 為常數，這顯示金屬遵守歐姆定律。

當溫度升高時，電子氣體的運動平均 u 增大，(5-10) 式 ρ 亦增大，這顯示
金屬之電阻係數隨溫度之增加而增大。

由於半導體材料中，單位體積電荷載體之個數 \(n \) 有隨溫度之增加而增大之特性。從(5-10)式可知半導體材料之電阻係數會隨溫度之增大而減小，故半導體在低溫時 \(n \) 很小，電阻係數很大，可視為絕緣體。反之，在高溫時，\(n \) 很大，電阻係數很小，則可視為導體。

在超導體材料中，溫度一旦下降達到達臨界值時，電子的運動的速率小到幾乎為零，相對的，電子的平均自由路徑 \(\lambda \) 可視為無限大，故(5-10)式顯示在溫度達到達臨界值時，電阻係數趨於零，因此超導體中一旦有電流，此電流將永續存在。

5-4. 電阻(resistance)

圖 5-7 中的一段導體，其組成物質之成份與截面積皆為不均勻。有電流 \(I \) 自 \(a \) 端進入從 \(b \) 端出來。\(a \) 端與 \(b \) 端的電位分別為 \(V_a \) 與 \(V_b \)。設導體中任意一點的電場，電流密度，及截面積分別為 \(\vec{E}, \vec{J}, \) 與 \(A \)。則由電位差與電場的關係可導出以下之結果。

\[
V_{ab} = V_a - V_b = \int_a^b \vec{E} \cdot d\vec{s} = \int_a^b \rho \vec{J} \cdot d\vec{s} = \int_a^b \rho ds = \int_a^b \rho \frac{ds}{A} = IR
\]

式中 \(R \) 稱為電阻，單位為歐姆(ohm)，簡寫為 \(\Omega \)。

\[
R = \int_a^b \frac{\rho ds}{A} \quad (5-12)
\]

(5-12)式是運用導體材料的特性與規格來計算導體之電阻。由(5-11)式可得

\[
V_{ab} = IR \quad \text{或} \quad \frac{V_{ab}}{I} = R \quad (5-13)
\]

(5-13)式亦稱為歐姆定律，可敘述為某一導體，其兩端之端電壓 \(V_{ab} \) 與經過此導體之電流 \(I \) 的比值為 \(R \) (常數)。此比值 \(R \) 稱為該導體的電阻。凡遵守歐姆定律的導體稱為歐姆導體(Ohmic conductor)。

例 5-1. 一段電阻係數 \(\rho \) 為定值，截面積為 \(A \)，長為 \(L \) 的圓柱導體，電流從一端進入從另一端出來，試求此導體的電阻 \(R \)。見圖 5-8。

【解】

\[
R = \int_0^L \frac{\rho ds}{A} = \frac{\rho L}{A}
\]
由以上結果得知，材料與截面積皆為均勻之導體，其電阻與導體之長度成正比，與截面積成反比，與材料之性質有關。

例 5-2. 圖 5-9 為一段電阻係數為定值 ρ 的空心圓柱體，長度為 L，內、外半徑分別為 r_a 及 r_b，電流從內表面進入，從外表面出來。試求此導體的電阻 R。

【解】

$$R = \int_0^L \rho ds$$

取半徑為 $r(r_a < r < r_b)$，長為 L 之同軸圓柱面為截面積，如圖上虛線所示。

取

$$ds = dr$$

則

$$R = \int_{r_a}^{r_b} \frac{\rho dr}{2\pi rL} = \frac{\rho}{2\pi L} \int_{r_a}^{r_b} \frac{dr}{r} = \frac{\rho}{2\pi L} \ln \frac{r_b}{r_a}$$

電阻的聯結法

電阻器是一種電路元件，圖 5-10 為電阻器在電路上的圖示符號。圖上的英文字母 R 表示電阻器的電阻值。圖 5-10(a) 為大小固定的固定式電阻器，圖 5-10(b) 為大小可調整的可調式電阻器。

![圖 5-10](image)

一般電阻器都為固定式，電路元件工廠所生產的電阻器，皆有一定的大小規格。若在電路設計時，使用的電阻為特定大小的電阻器，但沒有現成的成品時，可利用各種現有規格的成品組合而獲得。電阻器的基本組合(聯結)法有以下二種:

電阻的串聯: 將電阻為 $R_1, R_2, R_3, \ldots, R_N$ 等 N 個電阻器依圖 5-11(a)的聯
結法組合，電流I從高電位V_a端流至V_b端時僅有此一條通路，這種聯結法稱為串聯。因此經過每個電阻器的電流皆為同一個電流I。根據歐姆定律，電流經過各電阻器產生的電壓降落分別為$V_1 = IR_1$, $V_2 = IR_2$, …, $V_N = IR_N$。則a,b端的總電壓V_{ab}為

$$V_{ab} = V_1 + V_2 + V_3 + \cdots + V_N$$

$$= I(R_1 + R_2 + R_3 + \cdots + R_N)$$

若此N個串聯電阻器，要組合成一個有特定大小電阻值為R_e的等效電阻器，如圖5-11(b)所示，則

$$V_{ab} = IR_e$$

由以上二式得知

$$R_e = R_1 + R_2 + R_3 + \cdots + R_N \quad (5-15)$$

由以上結果得知，串聯電阻器的等效電阻為各串聯電阻器電阻之和。

電阻的並聯：將電阻為R_1, R_2, …, R_N等N個電阻器依圖5-12的聯結法組合，每一個電阻器的正極一端接在高電位V_a的一端，負極則一端接在低電位V_b的一端，即每個電阻器的二端的電壓皆同為V_{ab}，這種聯結法稱為並聯。由V_{ab}端流出的電流I分成I_1, I_2, I_3, …, I_N等N個分電流，分別流經N個電阻器。則

$$I = I_1 + I_2 + I_3 + \cdots + I_N$$

應用歐姆定律於各分電流得

$$I = V_{ab} \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots + \frac{1}{R_N} \right)$$

若此N個並聯電阻器，要組合成一個有特定大小電阻值為R_e的等效電阻器，如圖5-11(b)所示，則
\[I = V_{ab} \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots + \frac{1}{R_N} \right) = \frac{V_{ab}}{R_c} \]

\[
\frac{1}{R_c} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots + \frac{1}{R_N}
\]

(5-16)

上式顯示並聯等效電阻 \(R_c \) 之倒數等於各並聯電阻倒數之和。

5.5. 電動勢 (electromotive force, emf)

若電荷可以在導體內不斷移動，便可在導體內產生源源不斷的電流。這種情況，一般可應用以下方法達成：用導體做成一個通路供電荷循環移動之用。如圖 5-13 所示。其中有一段導體稱為電動勢座 (seat of electromotive force)，像乾電池、蓄電池及發電機等，在其內部會產生非靜電場 \(\vec{E}_n \)。 \(\vec{E}_n \) 會將電荷 (以正電荷為例) 從電動勢座內 (稱為內電路) 較低電位之 \(b \) 端推至較高電位之 \(a \) 端，而使 \(a, b \) 端產生電位差 \(V_{ab} \)。此電位差 \(V_{ab} \) 會在電動勢座外之另一段導體 (稱為外電路) 產生靜電場 \(\vec{E}_c \)。在 \(a \) 點的電荷會被 \(\vec{E}_c \) 從外電路推回 \(b \) 點。像這樣的動作一再周而復始地進行，就會在迴路內產生電流。

![圖 5-13](image)

電動勢座在斷路時的運作情況：

電動勢座兩端點未接外電路時稱為處於斷路狀態。如圖 5-14 所示。在此狀況下，沒有通路可供電荷作循環移動。正電荷被電場 \(\vec{E}_n \) 推到 \(a \) 端就堆積於該處，而負電荷則被推到 \(b \) 端也堆積於該處。兩端堆積的正負電荷使電動勢座內開始產生靜電場 \(\vec{E}_c \)。此靜電荷一直堆積到 \(\vec{E}_c = -\vec{E}_n \) 為止。這時電動勢座之總電場 \(\vec{E} \) 為零。即

\[
\vec{E} = \vec{E}_n + \vec{E}_c = 0
\]

將上式等式兩端自 \(b \) 端至 \(a \) 端作線積分

\[
\int_b^a \vec{E} \cdot d\vec{s} = \int_b^a \vec{E}_n \cdot d\vec{s} + \int_b^a \vec{E}_c \cdot d\vec{s}
\]

(5-17)
令 \[\varepsilon = \int_b^a \bar{E}_r \cdot d\bar{s} \]

\(\varepsilon\) 稱為此電動勢的

又因總電場 \(\bar{E} = 0\), \(\therefore \int_b^a \bar{E} \cdot d\bar{s} = 0\), 及 \(\int_b^a \bar{E}_r \cdot d\bar{s} = V_{ab} = -V_{ab}\)

將以上各式代入(5-17)式得

\[0 = \varepsilon + V_{ab} = \varepsilon - V_{ab} \]

移項後得

\[V_{ab} = \varepsilon \] \hspace{1cm} (5-18)

式中 \(V_{ab}\) 稱為電動勢座兩端的電壓\((terminal\ voltage)\). (5-18)式顯示電動勢在斷路情況下，其端電壓等於其電動勢。

電動勢在供應電能的情況:

將一個內電阻為 \(r\) 的電動勢座, 連接一段電阻為 \(R\) 的外電路, 而形成一個通路, 如圖 5-15 所示. 在此情況下, 堆積於電動勢座兩端的電荷, 會同時在電動勢座內部與外電路分別產生靜電場 \(\bar{E}_r\) 與 \(\bar{E}_e\). 堆積的正電荷因 \(\bar{E}_r\) 的存在, 有一部份會離開電動勢座而沿外電路從 \(a\) 端移動至 \(b\) 端. 此時, 只要電動勢座內部電荷堆積的速率比離開的速率大, 則電荷繼續堆積, 兩端電壓 \(V_{ab}\) 也繼續增大. 直到電荷堆積與離開的速率相等時, 電荷便不再繼續堆積. 此時電壓 \(V_{ab}\) 及通路的電流 \(I\) 皆到達穩定值. 茲將此時電動勢座內部與外電路中, 電場運作的情況分別討論於下:

![圖 5-15](image)

\[E = E_r + E_e \]

上式等號兩端積分

\[\int_b^a \bar{E} \cdot d\bar{s} = \int_b^a \bar{E}_r \cdot d\bar{s} + \int_b^a \bar{E}_e \cdot d\bar{s} \]
\[Ir = \varepsilon + V_{ka} = \varepsilon - V_{ab} \]
\[V_{ab} = \varepsilon - Ir \]
(5-19)

從以上結果得知，電動勢在供應電能時，端電壓 \(V_{ab} \) 比電動勢 \(\varepsilon \) 為小。

外電路中

\[\vec{E} = \vec{E}_e \]

\[\int_{a}^{b} \vec{E} \cdot d\vec{s} = \int_{a}^{b} \vec{E}_e \cdot d\vec{s} \]

\[IR = V_{ab} \]
(5-20)

將(5-20)式與(5-19)式合併，得整個通路的電路方程(circuit equation)

\[\varepsilon = IR + Ir = I(R + r) \]

\[I = \frac{\varepsilon}{R + r} \]

若上式應用於多個電動勢與多個電阻的串聯電路時，電路方程為

\[I = \frac{\sum \varepsilon}{\sum R} \]
(5-21)

電動勢在電路上的符號用一長與一短的平行線表示，如圖 5-16 所示。長線的一端為高電位，短的一端為低電位。內電阻的位置有兩種表示法：一種是畫在長,短二平行線之間，見圖 5-16(a)，另一種是畫在短線的外側，見圖 5-16(b)。電動勢 \(\varepsilon \) 的方向為自短線至長線的方向，即與 \(\vec{E}_e \) 的方向相同。

![電路圖](a) ![電路圖](b)

(圖 5-16)

應用(5-21)式計算電流時，要先設定電流的方向，當電動勢的方向與電流相同時電動勢用正值，與電流方向相反時電動勢則用負值。電阻一律為正值。按此過程算出的電流值若為正時，表示當初設定電流的方向即為實際電流的方向。若算出之電流值為負時，則表示當初設定的電流方向與實際的方向相反。
電動勢在充電的情況

電動勢在供應電路電能的情況下，即電動勢式輸出電能時，電動勢是將其內能轉換為電能對外輸出，像電池及蓄電池之化學能，發電機內電樞的轉動動能等，就是電動勢的內能。當其內能用盡時，可反過來用外電路之電能轉換為內能。蓄電池為例，當其化學能用盡時，可輸入電能，電動勢會將電能轉換為化學能，這個過程稱為充電。圖 5-17 所示，為電源供應電流 I 從電動勢正極進入蓄電池，而從負極出來的情形。這時電荷從正極至負極所降低的電能便轉變為蓄電池的化學能。

![電動勢圖](image)

圖 5-17

電動勢內部之總電場為

$$\vec{E} = \vec{E}_n + \vec{E}_e$$

$$\int_a^b \vec{E} \cdot d\vec{s} = \int_a^b \vec{E}_n \cdot d\vec{s} + \int_a^b \vec{E}_e \cdot d\vec{s}$$

(5-22)

(5-22)式顯示，電動勢在充電時，由外電源加於電動勢的端電壓 V_{ab} 需大於電動勢 e 之值。

從以上討論的結果得知，電動勢有兩個作用：一是將內能轉換為電能；另一是將電能轉換為內能。

5-6. 電功率(power)

![電功率圖](image)

圖 5-18

圖 5-18 中的方框框代表任意一個電器。a 端為較高之電位 V_a，b 端為較低之電位 V_b，電流 I 的流向是從 a 端至 b 端。若電荷 Δq 從 a 端移至 b 端經
過 \(\Delta t \) 秒，而其電能減小之量 \(\Delta W_E \) 為

\[
\Delta W_E = \Delta q(V_a - V_b) = V_{ab}\Delta q
\]

則電功率 \(P \) 為

\[
P = \frac{\Delta W}{\Delta t} = V_{ab}\frac{\Delta q}{\Delta t} = V_{ab}I
\]

(5-23)

電功率的單位為瓦特(W)，1(W) = 1(V \cdot A)

純電阻器的電功率

電流 \(I \) 經過一個電阻為 \(R \) 的電阻器，
在電阻器兩端產生電壓為 \(V_{ab} \)，如圖 5-19所示。電源從 \(a \) 端輸入電阻器的電功率為

\[
P = V_{ab}I
\]

圖 5-19

將歐姆定律 \(V_{ab} = IR \) 或 \(I = \frac{V_{ab}}{R} \) 代入上式，得

\[
P = I^2R = \frac{V_{ab}^2}{R}
\]

(5-24)

上式為電阻器產生的熱功率。故電阻器可將電功率轉換為熱功率。

電源的輸出功率

電動勢源作電源之用時，是供應電功率至外電路如圖 5-20所示。由(5-19)式得知

\[
V_{ab} = \varepsilon - Ir
\]

圖 5-20

此情況下之電功率為

\[
P = V_{ab}I = \varepsilon I - I^2r
\]

(5-25)

(5-25)式中，\(V_{ab}I \) 為電源對外電路電輸出之功率。\(\varepsilon I \) 為電動勢源內能轉變為電能的功率。\(I^2r \) 為內電阻將電能的一部份轉變為熱能的功率。

輸入電源之功率

圖 5-21所示為外電源對電動勢源充電的情況。由(5-22)式得知
\[V_{ab} = \varepsilon + Ir \]

電功率為
\[P = V_{ab}I = \varepsilon I + I^2r \quad (5-26) \]

(5-26)式中，\(V_{ab}I \) 為外電源對電動勢座輸入之電功率。\(\varepsilon I \) 為電能轉變為電動勢座電流之功率。\(I^2r \) 為內電阻將輸入電能的一部分轉變為熱能之功率。

5-7. 直流電路(Direct-Current Circuit)

電路是用某些電路元件組成的電流通路。電路元件包括電動勢座、電阻器、電容器、電感器等。電路上流過各元件電流，若方向不隨時間改變，則為直流電。此時的電路稱為直流電路。

最簡單的直流電路為由電阻元件，其特點為經過電路上所有元件的電流為同一個電流。現用下列例題作為說明。

例 5-3. 試求圖 5-22 電路中的電流及節點 a 與 b 間之電位差 \(V_{ab} \)。

![電路圖](image)

【解】此電路為由電阻元件，應用串聯電路的電路方程(5-21)式

\[I = \frac{\sum \varepsilon}{\sum R} \]

假設電流 \(I \) 為逆時針方向，則

\[I = \frac{\varepsilon_1 + \varepsilon_2}{r_1 + R_1 + r_2 + R_2} = \frac{[18 \text{ (V)} + (-10)] \text{(V)}}{(2 + 3 + 1 + 2) \text{(Ω)}} = 1 \text{ (A)} \]

在解電路問題時，往往要計算電路上兩點的電位差。茲將計算電位差的步驟敘述如下：

(1) 標示各元件的極性：電位較高之一端用正號表示，電位較低之一端用負號表示。
電動勢的極性是固定的與電流的流向無關。電動勢座的極性符號為短線之一端為負，長線之一端為正。

電阻器的極性：電阻器在電流流進的一端為正，流出的一端為負。

照此規則，例 5-3 中各元件之極性標示如圖 5-22 所示。

(2) 設定 a, b 點的電位分別為 \(V_a \) 及 \(V_b \)，然後從 a 點開始沿任意一條路徑往 b 點之方向行進，到達 b 點時將 \(V_b \) 值分別與所經過各元件之壓升高及壓降低相加及相減，所得的總值等於 \(V_b \)。再從此等式中計算 \(V_a \) 減 \(V_b \) 之值，此值便為電位差 \(V_{ab} \)。在計算 \(V_{ab} \) 時至少要選擇兩條路徑計算之，兩條路徑計算的值若相等就表示結果正確。若二值不相等則表示計算有誤，有可能是原先電流值計算錯了。

計算例 5-3 之 \(V_{ab} \):

沿 acb 路徑:

\[
V_a - e_1 + I_{R1} + I_{R2} = V_b
\]

\[
V_a - 18 \text{ (V)} + [1 \text{ (A)} \times 2 \text{ (Ω)}] + [1 \text{ (A)} \times 2 \text{ (Ω)}] = V_b
\]

得 \(V_{ab} = V_a - V_b = 14 \text{ (V)} \)

沿 adb 路徑:

\[
V_a - I_{R1} - e_2 - I_{R2} = V_b
\]

\[
V_a - [1 \text{ (A)} \times 3 \text{ (Ω)}] - 10 \text{ (V)} - [1 \text{ (A)} \times 1 \text{ (Ω)}] = V_b
\]

得 \(V_{ab} = V_a - V_b = 14 \text{ (V)} \)

例 5-4。計算圖 5-23a 電路中經過各元件的電流。電動勢 \(e = 12 \text{ (Ω)} \)，\(R_1 = 1 \text{ (Ω)} \)，\(R_2 = 3 \text{ (Ω)} \)，\(R_3 = 6 \text{ (Ω)} \)。\(r = 1 \text{ Ω} \)

【解】此電路不是串聯電路，故不可應用(5-21)式串聯電路方程解電流。繪出此電路之等效串聯電路如圖 5-23b 所示:

\(R'_c \) 為 \(R_2 \) 與 \(R_3 \) 的並聯等效電阻。故
\[
\frac{1}{R_e} = \frac{1}{R_2} + \frac{1}{R_3}
\]
\[
R_e = \frac{R_2 R_3}{R_2 + R_3} = \frac{3 \text{ (Ω)} \times 6 \text{ (Ω)}}{(3 + 6) \text{ (Ω)}} = 2 \text{ (Ω)}
\]

![電路圖](a) ![電路圖](b)

圖 5-23

這時由圖 5-23b，選電流的流向與電動勢同方向，應用(5-21)式計算電流

\[
I = \frac{\varepsilon}{r + R_1 + R_e} = \frac{12 \text{ (V)}}{1 + 1 + 2 \text{ (Ω)}} = 3 \text{ (A)}
\]

回到圖 5-23a 得知經過電動勢 \(\varepsilon \) 及電阻 \(R_1 \) 之電流為 \(I = 3 \text{ (Ω)} \).

令經過 \(R_2 \) 及 \(R_3 \) 的分電流分別為 \(I_2 \) 及 \(I_3 \). 則應用克希荷夫電流定律於 a 點得.

\[
I = I_2 + I_3 = 3 \text{ (A)}
\]

\(R_2 \) 與 \(R_3 \) 為並聯，電阻兩端有相同的電壓，故

\[
I_2 R_2 = I_3 R_3, \quad 3I_2 = 6I_3
\]

解以上二式得 \(I_2 = 2 \text{ (A)} \), \(I_3 = 1 \text{ (A)} \).

斷路(open circuit)與短路(short circuit)

![斷路圖](a) ![短路圖](b) ![短路圖](c)

圖 5-24

圖 5-24(a) 之一段電路中，應用總電流等於分電流之和以及並聯電阻的特性分別得以下二式.
\[I_1 + I_2 = I \quad \text{及} \quad I_1 R_1 = I_2 R_2 \]

解得
\[I_1 = \frac{R_2}{R_1 + R_2} I \quad \text{及} \quad I_2 = \frac{R_1}{R_1 + R_2} I \]

若將連接 \(R_2 \) 之理想導線接斷，如圖 5-24(b)所示，使電流不能通過，截斷部份如同一個電阻為無限大的電阻器，則此分路稱為斷路。在此狀況下，電阻 \(R_2 \) 與無限大電阻串聯之結果，得 \(R_2' = R_2 + \infty = \infty \)，則

\[I_1 = \frac{R_2'}{R_1 + R_2'} I = \frac{\infty}{R_1 + \infty} I = I \]

\[I_2 = \frac{R_1}{R_1 + R_2'} I = \frac{R_1}{R_1 + \infty} I = 0 \]

故當含 \(R_2 \) 的分路為斷路時，電流不經過此分路而全部經過另一分路。

若將電路中之 \(R_2 \) 用電阻為零的理想導線予以取代，如圖 5-24(c)所示。這種狀況稱為短路。

\[I_1 = \frac{R_2}{R_1 + R_2} I = \frac{0}{R_1 + 0} I = 0 \]

\[I_2 = \frac{R_1}{R_1 + R_2} I = \frac{R_1}{R_1 + 0} I = I \]

故當含 \(R_2 \) 的分路為短路時，又稱電阻 \(R_1 \) 被短路，則電流全部經過短路之分路而不經過電阻 \(R_1 \)。

串聯電路只有一個網目，故只有一個迴路，可以用串聯電路方程(5-21)解其電流。非串聯電路通常有二個以上的網目，此時串聯電路方程不再適用，而要運用克希荷夫定律又翻譯為基爾霍夫定律(Kirchhoff’s laws)予以解之。克希荷夫定律有兩個部份，一個是克希荷夫電流定律，另一個是克希荷夫電壓定律。茲分述於下：

克希荷夫電流定律(Kirchhoff’s Current Law, 簡寫為 KCL)

電路上之任何一點稱為節點(node)。在三條以上路徑交集的節點上，有流進與流出此節點的電流，則流進節點的總電流等於流出之總電流，這個等式稱為節點方程。整個電路若有N個這樣的節點，只可列出N-1個節點方程。

克希荷夫電壓定律(Kirchhoff’s Voltage Law, 簡寫為 KVL)

沿任意一個迴路繞一整圈時，電壓上升或下降之總數為零。
例 5-5. 圖 5-25 之電路中，$e_1 = 3 \text{ V}$，$e_2 = 6 \text{ V}$，$R_1 = R_2 = 1 \Omega$，及 $R_3 = 4 \text{ V}$ (a) 試用克希荷夫定律計算電路之電流，(b) 求 c, d 二點的電位差 V_{cd}，(c) 計算各電動勢之電功率及電阻所消耗的總電功率。

【解】(a) 此電路共有 a 與 b 二個節點位在三叉路口上，電流從節點 a 到節點 b 可經由三條路徑，這三條路徑稱為支路。

首先任意假設各支路之電流分別為 I_1，I_2，及 I_3，如圖所示，並於節點 a 應用 KCL 列方程式如下。

$$I_1 + I_3 = I_2$$

(5-27)

其次選擇二個網目，在二個網目上分別取逆時針方向的迴路 I 與 II，如圖所示，並沿每個迴路標示各元件之極性，再應用 KVL 得下列二方程式:

迴路 I: $$-I_1 R_1 - e_1 + I_2 R_3 = 0$$

$$I_1 - 4I_3 = -3$$

(5-28)

迴路 II: $$-I_2 R_3 + e_2 - I_2 R_2 = 0$$

$$I_2 + 4I_3 = 6$$

(5-29)

解(5-27)，(5-28)，及(5-29)三式得

$$I_1 = 1 \text{ (A)}, \quad I_2 = 2 \text{ (A)}, \quad I_3 = 1 \text{ (A)}$$

由以上結果得知，三個電流皆為正值，表示當初假設電流的方向都與電流實際的方向相同。若解出某電流為負值者，表示該電流的假設方向與實際方向相反。

(b) 經由 cad 路徑求 V_{cd}:

$$V_c + I_1 R_1 + I_2 R_2 = V_d$$

$$V_{cd} = V_c - V_d = -[1 \text{ (A)} \times 1 \text{ (Ω)}] - [2 \text{ (A)} \times 1 \text{ (Ω)}] = -3 \text{ (V)}$$

經由 cbd 路徑求 V_{cd}:

$$V_c - e_1 + e_2 = V_d$$
\[V_{ca} = V_c - V_a = 3 \text{ (V)} - 6 \text{ (V)} = -3 \text{ (V)} \]

經由以上二路徑所解出之電位差有相同之值, 得知此解為正確.

(c) 電動勢 \(\varepsilon_1 \) 的電功率為

\[P_{\varepsilon_1} = I_1 \varepsilon_1 = 1 \text{ (A)} \times 3 \text{ (V)} = 3 \text{ (W)} \]

電流從此電動勢座之正極流進, 從負極流出, 故此電動勢將電功率轉為內能功率, 即消耗電功率.

電動勢 \(\varepsilon_2 \) 的電功率為

\[P_{\varepsilon_2} = I_2 \varepsilon_2 = 2 \text{ (A)} \times 6 \text{ (V)} = 12 \text{ (W)} \]

電流從此電動勢座之負極流進, 從正極流出, 故此電動勢座將內能功率轉為電功率, 即供應電功率.

電阻的電功率為

\[P_R = I_1^2 R_1 + I_2^2 R_2 + I_3^2 R_3 \]

\[= 1 \text{ (A}^2\text{)} \times 1 \text{ (Ω)} + 2 \text{ (A}^2\text{)} \times 1 \text{ (Ω)} + 1 \text{ (A}^2\text{)} \times 4 \text{ (Ω)} \]

\[= 9 \text{ (W)} \]

電阻器將電功率轉為熱功率, 即消耗電功率.

從以上結果得知, 一個電路中, 某些電源供應的總電功率, 必等於其他元件消耗的總電功率, 即一個電路內的功率始終維持供需平衡狀態. 特別值得注意的是, 電功率的供需原則為「有求必應」而不是「量入為出」. 換句話說, 電源供給其他元件要消耗多少功率它就供應多少功率, 而不是其他元件視電源能供應多少功率就消耗多少功率. 因此在設計電路時, 設計者要注意電源的供應能力, 切莫使消耗量大於能供應之最大限度. 一但元件的消耗電功率需索過度, 電源會因不堪負荷而毀損. 有時甚至會引起電源器之爆炸. 最好在設計電路時, 加入保護裝置, 如保險絲或跳電裝置等. 一旦消耗有超量情形發生, 保護裝置會立即產生斷路以停止電路的運作.

5-8. 直流 RC 電路

RC 電路除了有電動勢座, 電阻器等元間之外, 還包括電容器元件. 在圖 5-26(a) 的 RC 電路中, 電容器起初未充電. 理想電動勢座之端電壓 \(V \) 為常數.
電容器充電過程

在 \(t = 0 \) 時，當開關 \(S \) 接到位置 1 時，正、負電荷開始從電動式座分別移向電容器的正極與負極，同時有初電流 \(I_0 \) 自電動勢之正極流向負極。電容器於始開始充電，使二極產生電壓。因這個電壓與電動勢電壓的方向相反，使得電流越來越小，但電容器上之電荷仍繼續堆積，直到電流值遞減至零，而電荷的絕對值堆積到最大值 \(q_{\text{max}} \) 了才不再堆積。這是電容器充電的全部過程。將電容器之電量及電路上之電流與時間的關係導出如下。

假設電鍵 \(S \) 接通後之 \(t \) 時刻，電流為 \(I \)、電量為 \(q \)。於標示各元件的極性後，見圖 5-26(b)，應用 KVL 列出電路方程

\[
v_{R_1} + v_c = V
\]

將 \(v_n = iR_1 \) 及 \(v_c = q / C \) 代入上式得

\[
iR_1 + \frac{q}{C} = V
\]

(5-30)

上式即為此電路之電路方程，電路之初始狀態與末後狀態分別為 \(t = 0 \) 時，

\[q = 0, \ i = I_0; \]

及 \(t \to \infty \) 時，

\[q = q_{\text{max}}, \ i = 0.\]

而在 \(0 < t < \infty \) 間，

\[
i = \frac{dq}{dt}
\]

(5-31)

式中 \(\frac{dq}{dt} \) 為電容器上電荷之增加率。將上式代入(5-30)得

\[
R_1 \frac{dq}{dt} + \frac{1}{C} q = V
\]

\[
q - CV = -R_i C \frac{dq}{dt}
\]

\[
\int_0^q q - CV = -\frac{1}{R_i C} \int_0^t dt
\]
\[
\ln(q - CV) = -\frac{1}{R_C} \int_0^t dt
\]

由此可得電容器電量與時間之關係為

\[
q(t) = CV (1 - e^{-\frac{t}{RC}}) = CV (1 - e^{- \frac{t}{\tau_1}})
\] \hspace{1cm} (5-32)

式中 \(\tau_1 = R_C\), 稱為時間常數(time constant), 單位為秒. 當 \(t = \tau_1\) 時,

\[
q(t = \tau_1) = CV (1 - e^{-1}) = CV (1 - 0.368) = 0.632 CV = 0.632 q_{max}
\]

將(5-32)式代入(5-31)式得電流與時間的關係

\[
i(t) = \frac{dq}{dt} = \frac{V}{R_1} e^{-\frac{1}{R_C}} = \frac{V}{R_1} e^{- \frac{t}{\tau_1}}
\] \hspace{1cm} (5-33)

\[
i(t = \tau_1) = \frac{V}{R_1} e^{-1} = 0.368 \frac{V}{R_1} = 0.368 I_o
\]

茲將電荷及電流與時間的關係曲線分別繪出於圖 5-27 及圖 5-28

![圖 5-27](image1)

![圖 5-28](image2)

當電容器之電荷從零開始堆積到 \(q(\tau_1) = q_{max} (1 - e^{-1}) = 0.632 q_{max}\), 以及電流從初值 \(I_o\) 遞減至 \(i(\tau_1) = I_o e^{-1} = 0.368 I_o\) 時所需的時間稱為時間常數. 一般當 \(t = 5\tau_1\) 時, 上升的函數曲線幾達最大值, 而下降的函數曲線幾達最小的零值. 由於 \(\tau_1 = R_C\), 時間常數之大小全由電阻 \(R\) 及電容 \(C\) 的值而定. 故藉調整 \(R\) 及 \(C\) 的值, 可控制時間常數的大小. 時間常數愈大時, 曲線上昇或下降的斜率愈緩. 反之, 時間常數愈小時, 曲線上昇或下降的斜率愈急.

電阻器的端電壓為

\[
v_{R_1}(t) = R_1 i(t) = V e^{-\frac{1}{R_C}} = V e^{- \frac{t}{\tau_1}}
\]
電容器的端電壓為

\[v_c(t) = \frac{1}{C} q(t) = V(1 - e^{-\frac{t}{RC}}) = V(1 - e^{-\frac{t}{\tau}}) \]

電容器在充電時，要特別注意其等效狀態。由(5-33)式

\[i(t) = \frac{V}{R_i} e^{-\frac{t}{RC}} = \frac{V}{R_i} e^{-\frac{t}{\tau_i}} \]

在初始狀態 \(t = 0 \) 時，\(i = \frac{V}{R_i} \)，相當於電容器為短路。而在末後狀態 \(t \to \infty \) 時，
\[i = 0, \] 相當於電容器為斷路。這些狀態可用圖 5-29 予以表示。

\[t = 0 \quad \text{短路} \]

\[t \to \infty \quad \text{斷路} \]

圖 5-29

電容器放電過程

當圖 5-26(b)電路中之電容器充電到 \(q = q_0 \) 之瞬間，將電鍵 \(S \) 接到位置
2，如圖 5-30 所示，並於此刻重新計時，從此刻開始，電動勢不再供電，
於是電容器開始放電，此時電流的流向與充電時相反，由於電阻器會消耗
電能，故電流 \(i \) 與電量 \(q \) 皆隨時間遞減，

圖 5-30

假設在時刻 \(t \) 時，電流為 \(i \)，電量為 \(q \)。此瞬間之電路方程為

\[v_{R_1} + v_{R_2} = v_c \]

\[i(R_1 + R_2) = \frac{q}{C} \]

令 \(R = R_1 + R_2 \)，上式變為
\[iR = \frac{q}{C} \] (5-34)

電路的初始狀態與末後狀態分別為

\[t = 0 \text{時}, \quad q = q_0, \quad i = \frac{q_0}{RC} = \frac{q_0}{(R_1 + R_2)C} = I_0; \]

\[t \to \infty \text{時}, \quad q = 0, \quad i = 0. \]

放電時，

\[i = -\frac{dq}{dt} \] (5-35)

上式代入(5-34)式得

\[-R \frac{dq}{dt} = \frac{q}{C} \]

\[\int q dq = -\frac{1}{RC} \int dt \]

\[\ln \frac{q}{q_0} = -\frac{1}{RC} t \]

電量與時間的關係式

\[q(t) = q_0 e^{-\frac{t}{RC}} = q_0 e^{-\frac{(R_1 + R_2)C}{R_1} t} = q_0 e^{-\frac{1}{\tau_2} t} \] (5-36)

上式代入(5-35)式得電流與時間的關係

\[i(t) = \frac{q_0}{(R_1 + R_2)C} e^{-\frac{t}{(R_1 + R_2)C}} = \frac{q_0}{(R_1 + R_2)C} e^{-\frac{1}{\tau_2} t} = I_0 e^{-\frac{1}{\tau_2} t} \] (5-37)

式中 \[\tau_2 = (R_1 + R_2)C \] 為電容器放電時電路的時間常數。電量與電流與時間的關係曲線分別如圖 5-31 與圖 5-32 所示
\[v_{R_1}(t) = R_1i(t) = \frac{R_1q_o}{(R_1 + R_2)C} e^{-\frac{t}{\tau_2}} \]

\[v_{R_2}(t) = R_2i(t) = \frac{R_2q_o}{(R_1 + R_2)C} e^{-\frac{t}{\tau_2}} \]

\[v_C(t) = \frac{q(t)}{C} = \frac{q_o}{C} e^{-\frac{1}{(R_1 + R_2)C}t} = \frac{q_o}{C} e^{-\frac{1}{\tau_1}} \]

例 5-7. 圖 5-33 中之電容器於充滿電後，要經過多少個時間常數的放電時間
(a) 放出其電量的一半, (b) 放出其能量的一半.

【解】(a) 電容器在放電過程中電荷與時間的關係為

\[q(t) = q_{max}e^{-\frac{t}{RC}} = q_{max}e^{-\frac{t}{\tau}} \]

式中 \(\tau = RC \) 為時間常數，

當 \(q(t) = \frac{1}{2}q_{max} \) 時

\[\frac{1}{2}q_{max} = q_{max}e^{-\frac{t}{\tau}} \rightarrow e^{-\frac{t}{\tau}} = 2 \rightarrow \frac{t}{\tau} = \ln 2 = 0.693 \]

\[t = 0.693\tau \]

(b) 放電時電容器電能與時間的關係

\[W_c(t) = \frac{1}{2C} \left[q(t) \right]^2 \]

\[= \frac{1}{2C} q_{max}^2 e^{-\frac{2t}{RC}} = W_{c,max} e^{-\frac{2t}{RC}} \]

當 \(W_c(t) = \frac{1}{2}W_{c,max} \) 時，代入上式得

\[\frac{1}{2}W_{c,max} = W_{c,max} e^{-\frac{2t}{\tau}} \rightarrow 2t = 0.693\tau \]

解得

\[t = 0.347\tau \]
第 5 章 直流電路習題

1. Van de Graaff 發電機之皮帶寬為 50 (cm), 以 30 (m/s)之速度行進. 輸入金屬球之電流相當於 10 (A), 試計算皮帶表面之電荷密度.
 Ans. \(\sigma = 6.7 \times 10^{-6} \text{ (C/m²)} \)

2. 內, 外半徑分別為 \(r_a \) 與 \(r_b \) 的同心球間, 填滿電阻係數為 \(\rho \) 之導體材料. (a) 證明二球間之電阻為 \(R = \frac{\rho}{2\pi} \left(\frac{1}{r_a} - \frac{1}{r_b} \right) \). (b) 假設二球間之電壓為 \(V_{ab} \), 求電流密度與半徑之關係.
 Ans. (b) \(j = \frac{r_a r_b V_{ab}}{\rho(r_b - r_a) r^2} \)

3. 內, 外半徑分別為 \(r_a \) 與 \(r_b \), 長度為 \(L \) 之極長圓柱球間填滿電阻係數為 \(\rho \) 之導體材料, 若二球間之電壓維持定值 \(V_{ab} \), (a) 此物體之電阻為何? (b) 二球間任意一點之電場為何?
 Ans. (a) \(R = \frac{\rho}{2\pi L} \ln \frac{r_b}{r_a} \), (b) \(\vec{E} = \hat{r} \frac{V_{ab}}{\ln \frac{r_b}{r_a}} \)

4. 一個電阻器的形狀像切掉頂部之正圓椎形, 如右圖所示. 二底之半徑分別為 \(a \) 及 \(b \), 二底間之距離為 \(\ell \), 若 \(a \) 與 \(b \)之值相差不大, 各截面之電流可視為均勻. (a) 求此電阻器之電阻. (b) 證明當上述結果在 \(a \) 與 \(b \)之差趨於零的情況下, \(R = \frac{\rho \ell}{A} \), 式中 \(A \) 為電阻器之截面積.
 Ans. (a) \(R = \frac{\rho \ell}{\pi ab} \)

5. 從旋轉加速器射出 16 (MeV) 之氚核束, 撞擊於鈾塊之表面, 射束相當於 \(15 \times 10^{-6} \text{ (A)} \) 之電流. 問 (a) 每秒放出之氚核數為若干? (b) 鈾塊產生之熱功率為若干?
 Ans. (a) \(9.4 \times 10^{15} \text{ (nuclear/s)} \), (b) 240 (J/s) 或 57.3 (cal/s)

6. 一個 1,250 (W) 之電熱器係設計於 115 (V) 之電壓下使用. (a) 電熱器線圈之電流為若干? (b) 電熱器線圈之電阻為若干? (c) 電熱器一時段放多少熱?
 Ans. (a) \(i = 10.9 \text{ (A)} \), (b) \(R = 10.6 \text{ (Ω)} \), (c) \(W = 1.08 \times 10^6 \text{ (cal)} \)

7. 一盞檯燈設計在電壓 \(V = 100 \text{ (V)} \) 下使用時, 消耗 \(P = 100 \text{ (W)} \) 之功率. 若在
$V = 50 \text{ (V)}$ 之電源下使用時，則功率為若干？
Ans. 25 (W)

8. 一個斜角為 θ，速率为 v 的電扶梯。當一個質量為 m 的人乘扶梯上樓，則驅動扶梯的電動機所需的電流 i 比空轉時，至少要增加多少？假設電源之電壓為 V.
Ans. $\Delta I = \frac{mgv \sin \theta}{V}$

9. 電阻為 5.0 (Ω) 之導線接在電動勢為 2.0 (V)電池之兩端，電池之內阻為 1.0 (Ω)。在 2.0 分鐘內，(a) 有多少化學能轉變為電能？(b) 導線上產生多少焦耳熱？(c) 說明(a)與(b)項結果之差異。
Ans. (a) $W_e = 80 \text{ (J)}$，(b) $W_R = 66.7 \text{ (J)}$，(c) $W_R = W_e - W_R < W$.

10. 一個電動勢為 $\varepsilon = 2.0 \text{ (V)}$，內電阻為 $r = 1.0 \text{ (\Omega)}$ 之電池，用於驅動一個動機。此動機以 $v = 0.50 \text{ (m/s)}$ 之定速將一個重為 $W = 2.0 \text{ (N)}$ 的物體舉起。假設無能量損失，求 (a) 電路中之電流 i，(b) 電動勢之端電壓。
Ans. (a) $i = 1 \text{ (A)}$，(b) $V = 1 \text{ (V)}$.

11. 電動式為 ε，內電阻為 r 之電池，其接緣路之電阻為 R。求其輸出功率。
Ans. $P = \frac{\varepsilon^2 R}{r + R}$.

12. (a) 試論，當上題之外電阻等於電池之內電阻時，輸出功率有最大值。
(b) 證明此最大功率為 $P_{\text{max}} = \frac{\varepsilon^2}{4r}$.

13. 試求右圖電路中 c, d 二電之電位差。
\[\varepsilon_1 = 4.0 \text{ (V)} \]，\[\varepsilon_2 = 1.0 \text{ (V)} \]
\[R_1 = R_2 = 10 \text{ (\Omega)} \]
\[R_3 = 5.0 \text{ (\Omega)} \]
Ans. $V_{cd} = -0.25 \text{ (V)}$

14. 試求右圖電路中，(a) 電池輸出之功率，(b) 2 (Ω)電阻所消耗之功率。
Ans. (a) $si = 27.8 \text{ (W)}$，(b) $i^2R = 9.9 \text{ (W)}$

15. 右圖的三個電阻器皆為 $2(\Omega)$，每個電阻之
功率不得超過 18 (W)，求此網路所能承受之最大功率。
Ans. 27 (W).

16. (a) 右圖電路中，電鍵 S 未接通時，a, b 兩點之電位為何？
(b) a, b 兩點之電位何者較高？
(c) 電鍵 S 接通後，b 點之最終電位為何？
(d) 電鍵 S 接通後，有多少電荷通過電鍵 S?
Ans. (a) $V_a = 6$ (V), $V_b = 12$ (V),
(b) 接通前 $V_a > V_b$,
(c) $V_b = 0$,
(d) $q = 54 \times 10^{-6}$ (C)

17. (a) 右圖電路中，電鍵 S 未接通時，a, b 兩點之電位為何？
(b) a, b 兩點之電位何者較高？
(c) 電鍵 S 接通後，b 點之最終電位為何？
(d) 電鍵 S 接通後，各電容器上的電荷改變多少？
Ans. (a) $V_{ab} = 18$ (V),
(b) $V_a > V_b$ $\therefore V_a = 18$ (V), $V_b = 0$,
(c) $V_b = 6$ (V),
(d) $\Delta q_a = -36$ (μC), $\Delta q_b = -36$ (μC)

18. 右圖之電路，試求下列情況下，i_1, i_2, i_3 及 V_C
 (a) S 剛按下，(b) S 按下不久，(c) S 按下不久後，打開之瞬時，(d) S 打開不久後。
Ans. (a) $V_C = 0$, $i_1 = \frac{(R_3 + R_1)\varepsilon}{R_1 R_2 + R_2 R_3 + R_3 R_1}$
 $i_2 = \frac{R_3 \varepsilon}{R_1 R_2 + R_2 R_3 + R_3 R_1}$, $i_3 = \frac{R_2 \varepsilon}{R_1 R_2 + R_2 R_3 + R_3 R_1}$,
 (b) $i_1 = i_2 = \frac{\varepsilon}{R_1 + R_2}$, $i_3 = 0$, $V_C = \frac{R_3}{R_1 + R_2} \varepsilon$
 (c) $V_C = \frac{R_3}{R_1 + R_2} \varepsilon$, $i_1 = 0$, $i_2 = \frac{R_2 \varepsilon}{(R_1 + R_2)(R_2 + R_3)} = -i_3$
 (d) $V_C = 0$, $i_1 = i_2 = i_3 = 0$